
www.manaraa.com

Softw Syst Model (2013) 12:453–474
DOI 10.1007/s10270-011-0221-0

REGULAR PAPER

From types to type requirements: genericity for model-driven
engineering

Juan de Lara · Esther Guerra

Received: 5 March 2011 / Revised: 17 September 2011 / Accepted: 26 October 2011 / Published online: 23 November 2011
© Springer-Verlag 2011

Abstract Model-driven engineering (MDE) is a software
engineering paradigm that proposes an active use of models
during the development process. This paradigm is inherently
type-centric, in the sense that models and their manipula-
tion are defined over the types of specific meta-models. This
fact hinders the reuse of existing MDE artefacts with other
meta-models in new contexts, even if all these meta-models
share common characteristics. To increase the reuse oppor-
tunities of MDE artefacts, we propose a paradigm shift from
type-centric to requirement-centric specifications by bring-
ing genericity into models, meta-models and model manage-
ment operations. For this purpose, we introduce so-called
concepts gathering structural and behavioural requirements
for models and meta-models. In this way, model management
operations are defined over concepts, enabling the appli-
cation of the operations to any meta-model satisfying the
requirements imposed by the concept. Model templates rely
on concepts to define suitable interfaces, hence enabling the
definition of reusable model components. Finally, similar to
mixin layers, templates can be defined at the meta-model level
as well, to define languages in a modular way, as well as lay-
ers of functionality to be plugged-in into other meta-models.
These ideas have been implemented in MetaDepth, a multi-
level meta-modelling tool that integrates action languages

Communicated by Prof. Dorina Petriu.

J. de Lara (B) · E. Guerra
Universidad Autónoma de Madrid, Madrid, Spain
e-mail: Juan.deLara@uam.es

E. Guerra
e-mail: Esther.Guerra@uam.es

Present Address:
J. de Lara
Computer Science Department, Universidad Autónoma de Madrid,
28049 Madrid, Spain

from the Epsilon family for model management and code
generation.

Keywords Model-driven engineering ·
Language engineering · Meta-modelling · Genericity ·
Reutilization

1 Introduction

Meta-modelling is a core technique in model-driven engi-
neering (MDE), where it is used for language engineering and
domain modelling. The main approach to meta-modelling is
the OMG’s meta-object facility (MOF) [40], which proposes
a strict meta-modelling architecture enabling the defini-
tion and instantiation of meta-models. MOF has a wide-
spread use, and has been partially implemented in the eclipse
modeling framework (EMF) [46]. However, even though
meta-modelling is becoming increasingly used at industrial
scale, current approaches and tools are scarcely ever con-
cerned with scalability issues like reusability, abstraction,
extendibility, modularity and compatibility (i.e. ease of com-
position) of models, meta-models and model management
operators, like transformations or code generators.

Generic programming [24,25,48] is a style of program-
ming in which types (typically classes) and functions are
written in terms of parametric types that can be instanti-
ated for specific types provided as parameters. This approach
promotes the abstraction of algorithms and types by lifting
their details from concrete examples to their most abstract
form [48]. The advantage is that such a generic algorithm can
be reused with any type that fulfils the algorithm’s require-
ments. Hence, generic programming shifts the emphasis
from type-centric to requirement-centric programming [37],
enhancing generality and reusability.

123

www.manaraa.com

454 J. de Lara, E. Guerra

In this paper, we propose such a paradigm shift from types
to type requirements for MDE as well, by bringing into MDE
some of the successful, proven principles of generic pro-
gramming. The goal is to solve some of the weaknesses of
current approaches to meta-modelling, transformation and
behaviour specification concerning reusability, modularity,
genericity and extendibility. For example, current approaches
to behaviour specification tend to define behaviour using the
types of one particular meta-model. However, as generic pro-
gramming often does, one should be able to define generic
behaviours applicable to several meta-models sharing some
characteristics and without resorting to intrusive mecha-
nisms. In this respect, we show that the use of generic con-
cepts specifying requirements from parametric types permits
defining behaviours in an abstract, non-intrusive way, being
applicable to families of unrelated meta-models. We con-
sider two kinds of concepts: structural and hybrid. The for-
mer expresses requirements on the structure of models and
meta-models, whereas the latter defines required meta-model
operations for specific meta-classes.

Models also suffer from an early concretization of details
which hinders their reusability and compatibility. The use of
model templates allows delaying some details on the model
structure by defining model parameters. In this way, a model
template can be instantiated with different parameters, allow-
ing its reusability in different situations, and enhancing its
compatibility and modularity. The expected requirements
for those parameters are expressed through concepts. Model
templates are also a mechanism to implement patterns for
domain-specific languages and libraries of reusable model
components. Moreover, templates can be defined over con-
cepts using genericity as well, so that they can be applicable
to families of languages. Hence, generic model templates are
a means to specify composable model patterns and fragments
in a language-independent way.

Finally, mixin layers [44] allow defining meta-model tem-
plates provided with generic functional capabilities to be
plugged into different meta-models. We found especially
useful the definition of semantic mixin layers containing the
necessary run-time infrastructure for the definition of the
semantics of meta-model families, together with associated
model simulators expressed on the generic types of the mixin.

As a proof of concept, we have implemented these
ideas in a multi-level meta-modelling framework called
MetaDepth [14]. This framework allows building sys-
tems with an arbitrary number of meta-levels, using deep
characterization through potency [3]. The framework pro-
vides a simple textual syntax that we use to illustrate the dif-
ferent elements we introduce in the paper, although please
note that we do not make use of the multi-level features of
our tool in this paper. Hence, our aim is not to describe an
extension of MetaDepth or to stress its multi-level meta-
modelling capabilities. We believe that genericity has a wide

potential in meta-modelling, and hence what we describe
here has immediate applicability to other frameworks (multi-
level or not) like the MOF.

This paper is an extended version of [15]. Here we include
hybrid concepts as a way to provide further flexibility by
omitting some structural requirements from concepts (which
can be implemented in different ways by different meta-
models) and providing appropriate operations for encapsu-
lation instead. We also introduce two relation types between
concepts: realization and generalization. A realization is a
static binding from a hybrid concept into a structural one
which provides an implementation for the operations in the
hybrid concept, thus making easier the reuse of any associ-
ated generic behaviour. The generalization relation between
concepts is similar to interface inheritance in Java. We have
also developed the idea of generic model templates, cap-
turing domain-specific modelling patterns in a meta-model
independent way. Finally, we have integrated the Epsilon
Generation Language (EGL) [42] in MetaDepth, so that
generic code generators can be defined as well, and included
a section with further case studies.

The paper is organized as follows. Section 2 reviews
generic programming. Section 3 introduces MetaDepth
so that its syntax is used in the rest of the paper to illus-
trate the different elements. This section also introduces
the model manipulation and code generation capabilities of
MetaDepth using the Epsilon Object Language (EOL) and
EGL. Section 4 presents structural concepts, together with
the binding from concepts to specific meta-models. Section 5
shows how to define generic behaviours and generic code
generators. Section 6 provides flexibility to concepts by the
notion of hybrid concept. This section also introduces static
bindings from hybrid concepts to structural ones, as well as
concept generalizations. Section 7 presents model templates
and Sect. 8 introduces semantic mixin layers. In Sect. 9, we
provide further examples that illustrate the presented ideas.
Section 10 discusses related research and Sect. 11 concludes.

2 From generic programming to generic model-driven
engineering

Genericity [24] is a programming paradigm that firstly
appeared in languages like CLU and Ada, and was subse-
quently adopted by many languages like C++, Haskell, Eiffel
or Java. Its goal is to express algorithms and data structures
in a broadly adaptable, interoperable form that allows their
direct reuse in software construction. It involves expressing
algorithms with minimal assumptions about data abstrac-
tions, as well as generalizing concrete algorithms without
losing efficiency [24]. Genericity promotes a paradigm shift
from types to algorithms’ requirements, so that even unre-
lated types may fulfil those requirements, hence making

123

www.manaraa.com

From types to type requirements 455

algorithms more general and reusable. Generic program-
ming has enabled some of the most widely used, reusable
and flexible libraries, like the C++ standard template library
(STL) [47] or Boost [7].

In its basic form, generic programming involves passing
type parameters to functions or data types which are then
called templates. Template functions and template classes
may require the parameter types to fulfil a number of require-
ments for a correct instantiation and execution of the tem-
plate. This set of requirements is usually expressed using a
concept [37]. Examples of requirements are a type which
must define a “<” binary relation, or a list of data objects
with a first element, an iterator and a test to identify the end.

As an example, Listing 1 shows a C++ template function
sdiff that returns the difference between two objects of type
T , in absolute value. The operation is not defined for integral
types only, but the requirements for the type T are expressed
by the concept1 LessThanCompSubst. The concept demands
the type T to define the “<” relation operator and a binary
subtraction operation. Other languages such as Java support a
simpler notion of concept limited to express the requirements
of a single type by demanding it to inherit from a specified
class or to implement a set of interfaces.

1 template <typename T> requires LessThanCompSubst<T>
2 T sdiff(T x, T y) {
3 return y < x ? (x-y) : (y-x);
4 }
5

6 concept LessThanCompSubst <typename T> {
7 bool operator<(T, T);
8 T operator-(T, T);
9 }

Listing 1 A template and a concept example in C++

Mixins are classes designed to provide functionality to
other classes, typically through parameterized inheritance,
promoting code reuse and modularity. Mixin layers [44]
extend mixins by encapsulating fragments of multiple clas-
ses to define a layer of functionality, which can be added
to other sets of classes. They were proposed as a technique
for implementing collaboration-based designs, where objects
play different roles in different collaborations. In this context,
mixin layers provide the needed functionality for each col-
laboration, so that the final system is obtained by composing
mixin layers.

2.1 Applying genericity in model-driven engineering

In this work, we adapt the previous ideas to MDE to promote
the modularity, extendibility, abstraction and reusability of
models, meta-models, and model management operations.

Figure 1 shows the different elements we introduce. First,
we use concepts to gather requirements for (meta-)models,

1 Concepts were postponed from C++0x, the last revision of C++ [49].

Concept
(requirements)

(Meta-)Model
Template

P
ar

am
s

Generic
Behaviour

«requires» «requires»

(Meta-)
Model-1

«binds»

(Meta-)
Model-2

(Meta-)
Model-n

«binds»

…

«binds»

Fig. 1 Fundamental elements for genericity in MDE

and to be able to define both generic behaviours and generic
(meta-)models. In particular, similar to template functions in
C++, we can make a model management operation generic by
defining the operation over a concept instead of over a partic-
ular meta-model. In this way, we obtain genericity because
the concept can be bound to several meta-models (namely
those satisfying the concept requirements) and the opera-
tion becomes applicable to all of them. Moreover, similar
to template classes in C++, we can build (meta-)model tem-
plates that include parameter types whose requirements are
expressed through a concept. Again, these templates can be
instantiated with any (meta-)model to which we can bind the
concept.

In the rest of the paper, we describe the elements in
Fig. 1 and some usage patterns. In particular, Sect. 4 intro-
duces concepts for expressing requirements for meta-models,
and the rules for binding a concept to a meta-model. Then,
Sect. 5 explores the use of operation templates to define
generic behaviour, like generic simulators and code gen-
erators. We discuss bindings from concepts to concepts as
well as concept generalizations in Sect. 6. Next, Sect. 7
explores the use of concepts to express requirements for mod-
els (instead of meta-models) and define model templates.
A useful usage scenario for model templates is the defi-
nition of generic model fragments, composable via inter-
faces whose requirements are expressed through concepts.
In this way, increasingly complex models can be easily built
by instantiating and connecting different model templates.
Finally, Sect. 8 presents meta-model templates. A particular
usage of these templates is mixin layers, which are meta-
model templates that can be plugged into any meta-model
satisfying the requirements expressed by a given concept.

Before delving into details, the next section introduces
MetaDepth as we will use its syntax to explain the generic-
ity building blocks.

3 MetaDepth

MetaDepth [14] is a new multi-level meta-modelling
framework with support for multiple meta-levels at the same
time using potency [3]. The potency of an entity is a natural
number that indicates the entity’s relative meta-level. At each
instantiation of the entity in a deeper meta-level, the potency

123

www.manaraa.com

456 J. de Lara, E. Guerra

decreases in one unit. When it reaches zero, we obtain an
instance that cannot be instantiated further (i.e. without type
facet). This approach is very useful to describe what we call
deep languages, which are languages that involve two or
more meta-levels at the user level. An example of a deep
language is the combination of UML class and object dia-
grams, if one thinks of object diagrams as instances of class
diagrams [14]. In the present paper, we do not make use
of the multi-level capabilities of MetaDepth, but stick to a
two-level setting where meta-models and their elements have
potency one, whereas their instances have potency zero.

MetaDepth uses a textual syntax and is integrated with
the EOL and EGL languages of the Epsilon family [22].
EOL [32] extends OCL with imperative constructs to manip-
ulate models, and is used in MetaDepth to express con-
straints and define behaviours. EGL [42] is a template-based
code generator language which can be used in MetaDepth
to generate code from models. In this section, we give an
overview of the textual syntax of MetaDepth and the fea-
tures used in this paper, see [14] for further details.

As an example, Listing 2 shows the definition of a meta-
model for Petri nets using MetaDepth’s syntax. The same
meta-model is shown in Fig. 2 using a UML representation to
ease understanding. Petri nets are a kind of automaton with
two types of vertices: Places and Transitions. Places contain
tokens and can be connected with transitions through arcs. In
their turn, transitions can also be connected to places through
arcs.

Listing 2 Meta-model for Petri nets in metaDepth

The listing declares a meta-model named PetriNet
using the keyword Model (line 1), which has potency 1
as this is the default potency if none is explicitly given.
The meta-model declares an abstract node NamedElement
owning a field name (lines 3–5). The field’s id modifier
states that no two instances of NamedElement can have

NamedElement

name: String {id}

Place Transition

Token
* tokens

1

ArcPT

ArcTP

outTr

inTr*
*

*
*
inPl

outPl

Fig. 2 Meta-model for Petri nets in UML

the same value for the field. Both Place and Transi-
tion inherit from NamedElement. The former declares
three references (outTr, inTr and tokens) with cardi-
nality 0..*. References are a kind of field, whose type is a
user-defined Node. The modifier ordered keeps the col-
lection elements in the order of assignment, while unique
forbids duplicated elements. The opposite ends of outTr
and inTr are declared by the edges ArcPT and ArcTP.
Similar to Nodes, Edges can also be provided with fields.
Thus, in MetaDepth’s syntax, Model is similar to a meta-
model,Node to a meta-class, andEdge to a meta-association
(in fact to an associative class).

MetaDepth supports the definition of constraints and
derived attributes in Java and EOL. Constraints can be
declared in the context of Models, Nodes and Edges. Line
23 in the listing declares an EOL constraint named min-
Places, which demandsPetriNetmodels to have at least
one Place. Please note that, while in MOF-based meta-
modelling environments this constraint should be placed in
the context of some meta-class (like Place itself, or in an
additional root class), MetaDepth allows a more natural
placement of the constraint in the context of the model itself.
Moreover, as MetaDepth allows specifying multiplicities
in the definition of Nodes, the same effect can be obtained
by replacing line 7 by “Node Place[1..*] : Nam-
edElement {”.

The defined meta-model can be instantiated as Listing 3
shows. This Petri net model represents a system with two
processes (producer and consumer) communicating through
a buffer of infinite capacity. Figure 3 shows the system using
the usual Petri nets visual notation, with places represented
as circles, transitions as black rectangles, and tokens as black
dots inside places. The dotted rectangles delimit the different
conceptual components of the system. All elements in List-
ing 3 have potency zero (as they are instances of elements of
potency 1) and cannot be further instantiated.

1 PetriNet ProducerConsumer {
2 Place WP { name="waitProduce"; }
3 Place RP { name="ReadyProduce"; }
4 Transition ReadyP { name="readyP"; }
5 Transition Produce { name="in"; }
6 ArcPT (RP, Produce);
7 ...
8 Place Buffer { name="Buffer"; }

123

www.manaraa.com

From types to type requirements 457

9 ...
10 Place C { name="Consume"; }
11 Place WC { name="waitConsume"; }
12 Transition Consume { name="out"; }
13 Transition ReadyC { name="waitC"; }
14 ...
15 }

Listing 3 A Petri net with the Producer–Consumer example in
MetaDepth’s syntax

Listing 3 makes use of the normal instantiation capabilities
found in most meta-modelling frameworks (like EMF [46]).
However, one soon notices that the definition of our model
could be improved concerning abstraction and modularity.
First, the user could have been offered higher-level model-
ling elements than places and transitions, like Buffers and
Processes. Moreover, inspecting the model, one realizes that
the two processes have exactly the same structure (two places
connected by transitions). Therefore, it would have been use-
ful to have a meta-modelling facility to define model com-
ponents—similar to modelling patterns—that the user can
instantiate and interconnect through suitable interfaces. Such
Petri net component models are enclosed in dashed rectan-
gles in Fig. 3. Section 7 will demonstrate how the use of
templates allows performing this at the model level, without
any need to modify the meta-model.

3.1 Defining in-place transformations

MetaDepth allows defining behaviour for models using
either Java or EOL [14]. EOL is, however, very well suited for
this purpose, as it permits defining methods on the meta-clas-
ses of the meta-models. Listing 4 shows a simulator written
in EOL to execute Petri net models. The entry point for its
execution is the operation main (line 2), which is annotated
with the meta-model to which the operation is applicable
(PetriNet in our case, so that the operation can be applied
to instances of this meta-model). The listing declares several
auxiliary operations. Two of them are defined on a global
context: writeState (line 15) prints the state of the net,
and getEnabled (line 17) returns a set of enabled tran-
sitions. The other two—enabled and fire, in lines 22
and 26—are defined on the context of the Transition
meta-class. While operation enabled checks if the transi-
tion is fireable (all input places have at least one token),fire

ReadyProduce

waitProduce

readyP

Consume

waitConsume

waitC

Bufferin out

Fig. 3 A Petri net with the Producer–Consumer example, in visual
notation

executes the transition, removing tokens from the pre-places
and adding tokens to the post-places. These operations are
invoked in the while loop of the main() operation (lines
6-12), firing randomly one of the enabled transitions. The
loop is restricted to a maximum number of iterations to pre-
vent infinite executions.

1 @metamodel(name=PetriNet,file=PetriNet.mdepth)
2 operation main() {
3 var maxStep : Integer := 100;
4 var numStep : Integer := 0;
5 var enabled : Set(Transition) := getEnabled();
6 while (enabled.size()>0 and numStep<maxStep) {
7 var t := enabled.random();
8 t.fire();
9 writeState(numStep);

10 numStep := numStep+1;
11 enabled := getEnabled();
12 }
13 }
14

15 operation writeState(step: Integer) {...}
16

17 operation getEnabled() : Set(Transition) {
18 return Transition.allInstances().select(t |
19 t.enabled()).asSet();
20 }
21

22 operation Transition enabled() : Boolean {
23 return self.inPl->forAll(p|p.tokens.size()>0);
24 }
25

26 operation Transition fire() {
27 for (p in self.outPl) {
28 p.tokens.add(new Token);
29 }
30 for (p in self.inPl) {
31 var t : Token := p.tokens.random();
32 p.tokens.remove(t);
33 delete t;
34 }
35 }

Listing 4 A simulator for Petri nets

This simulator works well for instances of the Petri net
meta-model. However, there are many languages whose
semantics can be defined in terms of Petri nets, such as work-
flow languages [9] and UML activity diagrams [39]. Also,
domain-specific languages like production systems [17]
(where parts are consumed and produced by machines),
communication systems [8] (where messages are sent and
received by nodes), and data-flow languages [16] (where data
are consumed and produced by processors) share semantics
with Petri nets. Therefore, can we abstract the essential ele-
ments of Petri net-like languages and define their behaviour
in a generic way? Section 4 will show that concepts are a
solution to this issue.

3.2 Defining code generators

We have recently integrated EGL into MetaDepth. EGL
is a template-based language for producing textual artefacts
from models. It combines the model navigation capabili-
ties of EOL with facilities for emitting textual code. The
EOL code in the templates is delimited by the markers

123

www.manaraa.com

458 J. de Lara, E. Guerra

“[%” and “%]”, whereas the text outside these markers is
either emitted in the standard output or saved into a file.

As an example, Listing 5 shows an excerpt of an EGL tem-
plate that generates a PNML [27] text file from a Petri net
model. PNML is a standard XML representation for different
kinds of Petri nets, used by many tools like CPNTools [13]
or PIPE [6]. Line 2 indicates that the template is defined
over the Petri Net meta-model, and is to be executed on its
instances. Then, lines 4-6 emit the XML header, and lines
7-16 iterate on all instances of Place generating the text in
lines 8-15 at each iteration.

1 [%
2 @metamodel(name=PetriNet,file=PetriNet.mdepth)
3 %]
4 <?xml version="1.0" encoding="iso-8859-1"?>
5 <pnml>
6 <net id="Net-One" type="P/T net">
7 [% for (h in Place.allInstances()) {%]
8 <place id="[%=h.name%]">
9 <name>

10 <value>[%=h.name%]</value>
11 </name>
12 <initialMarking>
13 <value>[%=h.tokens.size()%]</value>
14 </initialMarking>
15 </place>
16 [%}%]
17 ...

Listing 5 Code generator for Petri nets (excerpt)

The PNML code generated from a Petri net model can be
loaded in CPNTools or PIPE for analysis. For instance, we
can calculate the reachability graph [36] of the net, a graph-
based representation of all its possible states, which can be
used for verification of reachability properties and model-
checking.

Again, we would like to use the template in Listing 5
with other languages (apart from Petri nets) whenever their
semantics can be mapped to Petri nets, and without requir-
ing the types of a specific meta-model. The next section will
show how structural concepts are a means to gather require-
ments for the executability of a given model management
operation over certain meta-models. Hence, they allow the
development of generic model operations and code genera-
tors which can be used with different meta-models.

4 Structural concepts

A concept in meta-modelling is a pattern specification that
expresses requirements for a model (at any meta-level). Con-
cepts serve as a dual typing in the context where they are
used (e.g. generic model management operations), providing
an extra level of indirection which we use to define behav-
iour independently of specific meta-models. This is useful
for reusability and composition of behaviours, which can be
defined in terms of concepts instead of in terms of particular
meta-models.

To motivate and introduce the use of concepts, we first
start discussing an illustrative scenario.

4.1 Motivation

Assume one needs to describe the behaviour of two lan-
guages, one in the domain of Production Systems (where
parts are produced and consumed by machines) and the other
for Communication Networks (where packets are produced
and consumed by computers). The most immediate approach
is to define one program to simulate the first kind of models,
and another one to simulate the second kind of models. This
situation is illustrated in Fig. 4. In the figure, we assume that
behaviours are realized using EOL programs, however our
discussion and subsequent proposal based on concepts are
applicable to other means of specification of in-place model
transformations, like e.g. graph transformation [20].

An analysis of the semantics of these two languages
reveals similarities between the two programs implement-
ing them. This is due to the fact that both behaviours can
be mapped into the standard semantics of Petri nets. Hence,
instead of defining such similar behaviours twice, we can
transform the models into a common language (Petri nets)
and define the behaviour for the common language only once.
This situation is depicted in Fig. 5, where Model 1 is trans-
formed into Model 1’ and Model 2 is transformed into
Model 2’, being both transformed models conformant to
the same meta-model for which the behaviour is specified
(Petri nets in our example). Unfortunately, this situation is
not ideal either, as one has to define specific model-to-model
transformations between each language and the common lan-

Meta-Model
1

Meta-Model
2

Behaviour 1
(EOL) eq

ui
re

s» Behaviour 2
(EOL)eq

ui
re

s»

«conforms to» «conforms to»

()

«r
e

executes on executes on

()
«r

e

Model 1 Model 2

Fig. 4 Direct approach to behaviour specification

M2M trafo.
1to3

M2M trafo.
2to3

«requires» «requires» «requires»

Meta-Model
1

Meta-Model
2

Meta-Model
3

«requires»
«requires»

«requires»

tgt tgt

«conforms to» «conforms to»«conforms to» «conforms to»src
src

Model 1 Model 2

«requires»executes on

Model 1’ Model 2’

executes on

Behaviour 1
(EOL)

Fig. 5 Transformational approach to behaviour specification

123

www.manaraa.com

From types to type requirements 459

guage. Moreover, after modifying the transformed models
according to the behaviour, these have to be translated back
to their original language.

An improvement that avoids transforming models is to use
an extension, nominal subtyping or inheritance mechanism
for meta-models [33]. In this case which Fig. 6 illustrates, the
meta-models 1 and 2 explicitly extend a third meta-model
for which the behaviour is defined. In particular, their clas-
ses extend (or subclass) the classes that participate in the
defined behaviour for meta-model 3, so that this behaviour
also applies to the classes in 1 and 2. However, this solution
is intrusive as it requires all meta-models for which we want
to define behaviour to inherit or extend the same meta-model.
Hence, this approach requires the parent meta-model to be
defined beforehand, and the adopted solution may become
unfeasible if more than one semantics (e.g. timed and unti-
med) are to be defined for the same language.

In this scenario, concepts can simplify the situation as
they can express requirements on meta-models or models
that some specifications (in this case the behaviour) need.
In our example, we can define a concept expressing the
requirements that a simulator for Petri net-like languages
needs. This simulator abstracts from the specific details of
the languages, and uses only the elements defined in the
concept, hence being independent of any meta-model and,
therefore, non-intrusive. Thus, if our two original languages
satisfy the requirements of the concept, then the behaviour
can be applied to their instances as shown in Fig. 7. This

Meta-Model
33

»sdnetxe«»sdnetxe«
«requires»

Meta-Model
1

Meta-Model
2

» «

Behaviour
(EOL)

executes on executes on

Model 1 Model 2

» ««conforms to conforms to»«conforms to conforms to»executes on executes on

Fig. 6 Inheritance of behaviour by model extension

Concept
A

bi d bi d

Meta-Model Meta-Model

A
«bind «»s binds»

Behaviour

«requires»

1 2

«conforms to» «conforms to»

(EOL)

executes on executes on

Model 1 Model 2

Fig. 7 Behaviour specification based on concepts

scheme is the simplest and cleanest of the four, and its bene-
fits increase as we find new meta-models in which the concept
is applicable as we can reuse the defined behaviour for them.
Moreover, the mechanism is non-intrusive: the meta-models
for which we are defining the behaviour are not modified and
are oblivious of the concepts. That is, as a difference to Fig. 6,
meta-models do not have any dependence on the concepts,
and do not require the presence of concepts beforehand.
A similar effect could be achieved using structural sub-
typing mechanisms [10,45], where the relations between
the subtypes (meta-models) and the supertypes (concepts)
do not need to be explicitly declared because they are
inferred. Section 10 will discuss the similarities and differ-
ences between structural subtyping and our proposal based
on concepts in more detail.

4.2 Defining and binding structural concepts

A structural concept is a specification gathering the structural
requirements that need to be found in a model, at a particu-
lar meta-level. In this section, we will discuss concepts for
meta-models, however in Sect. 7 we will show that concepts
can be defined at the model level in the same way as for
meta-models.

The simplest way for expressing requirements for a meta-
model is in the form of a meta-model as well. Therefore, in
our approach, a concept (at the meta-model level) has the
form of a meta-model, where the elements in the concept are
interpreted as variables, to be bound to elements of specific
meta-models. Meta-model concepts may include inheritance
relations as well. Moreover, as we will see, concepts can be
enriched with further constraints, to be evaluated when the
binding is performed.

In our approach, a concept has a name and a number of
parameters that represent generic types of models, nodes,
edges or fields. Concepts can be bound against meta-mod-
els by a pattern-matching mechanism. In this way, a concept
C defines a language L(C) of all meta-models that satisfy
the requirements imposed by the concept C . Thus, L(C) con-
tains a family of meta-models sharing similar characteristics.
This situation is depicted in Fig. 8. The set of meta-models
belonging to set L(C) can be characterized using a function
bind from (the set of nodes, edges and fields in) the concept

Concept C
(meta-model

level)

«defines»
L(C)

«binds»

Meta-Model
&M

Meta-
Model-1

Meta-
Model-i

«belongs to»

Fig. 8 Meta-model concept, associated language and binding

123

www.manaraa.com

460 J. de Lara, E. Guerra

to (the set of elements in) the meta-model. If such a function
bind : C → M exists, then we say that M ∈ L(C).

The bind function maps each model, node, edge or field in
the concept to a model, node, edge or field in the meta-model,
respectively. There is no need to bind the inheritance rela-
tions appearing in the concept though, but the binding must
preserve the subtyping relation. Thus, if a node a inherits
from a node b in the concept, then the node bound to a must
be a direct or indirect child of the node bound to b. More-
over, if two fields (or references) are bound, then so must be
their container nodes. Alternatively, the bound meta-model
node can be a subnode of the actual field’s (or reference’s)
container node. In any case, the binding must preserve the
type of fields and references. As a consequence, since edges
are made of two opposite references, if an edge e in the con-
cept is mapped to an edge bind(e) in the meta-model, then
the source node of e should be mapped to the source node
of bind(e), and similarly for the target nodes. The binding
must also preserve the cardinality of fields and references.
Finally, the binding can be non-injective, therefore two dif-
ferent nodes in the concept can be mapped to a single node
in the meta-model, provided that such a node defines all the
features defined by the two nodes in the concept.

We use concepts to define generic model management
operations using their parameters as generic types, as well as
to describe conditions to be fulfilled by template parameters.
In contrast to generic programming, where concepts are used
to restrict the allowed types to only those defining a certain
set of operations, concepts in meta-modelling refer to struc-
tural features of meta-models. Thus, concepts can impose a
certain structure for nodes, edges and fields, as well as define
arbitrary constraints to restrict their applicability.

Figure 9 shows a concept gathering the structural require-
ments for meta-models to be simulated with similar seman-
tics to Petri nets, which we call Token-Holder semantics.
Listing 6 shows the same concept using MetaDepth’s syn-
tax. The concept declares seven parameters, which are treated
as variables and start by “&”. The body of the concept
requires &M to be a model with three nodes. Node &T plays
the role of token. Node&H plays the role of a holder of tokens,
as it is demanded to define a reference of type &T. Node &P
plays the role of a process or transition, and it must define

&M

concept TokenHolder

&H &P*
&inHolders

*

&outHolders

&T
&tokens*

Fig. 9 Structural concept for Token-Holder semantics

two references modelling the connection to input and output
holders. The body of a concept may include extra conditions
expressed in EOL, as well as constant elements as opposed
to variables. For example, we could demand node &H to have
a field called name of type String.

1 concept TokenHolder(&M, &H, &P, &T, &tokens,
2 &inHolders, &outHolders) {
3 Model &M {
4 Node &H {
5 &tokens : &T[*];
6 }
7 Node &P {
8 &inHolders : &H[*];
9 &outHolders: &H[*];

10 }
11 Node &T {}
12 }
13 }

Listing 6 Structural concept for Token-Holder semantics in Meta
Depth syntax

We use this concept to characterize the family of meta-
models sharing the Token-Holder semantics. For example,
the concept can be bound to the PetriNet meta-model of
Listing 2, where &H is bound to Place, &P to Transi-
tion, and so on. Listing 8 shows how this binding is spec-
ified in MetaDepth through the bind command, to which
we pass specific meta-model elements.

1 bind TokenHolder(PetriNet,
2 PetriNet::Place,
3 PetriNet::Transition,
4 PetriNet::Token,
5 PetriNet::Place::tokens,
6 PetriNet::Transition::inPl,
7 PetriNet::Transition::outPl)

Listing 7 Binding the TokenHolder concept to the Petri nets meta-
model defined in Listing 2

The same concept can be bound to other unrelated meta-
models as well. As an example, Listing 8 defines a meta-
model for Production Systems and its binding over the
TokenHolder concept. The meta-model declares machines
and conveyors, which can be connected to each other. Con-
veyors hold parts, which are fed into machines. Machines
process parts, which are produced into conveyors. In this
way, this working scheme is adequate for its simulation using
Token-Holder semantics. Hence, we use the TokenHold-
er concept and bind it to the meta-model in lines 22–28:
conveyors act like token holders, machines as processes or
transitions, and parts as tokens.

1 Model ProductionSystem {
2 Node Machine {
3 ref : String;
4 type : String;
5 inConveyors : Conveyor[*];
6 outConveyors : Conveyor[*];
7 }
8 Node Conveyor {
9 outMachines : Machine[*];

10 inMachines : Machine[*];
11 parts : Part[*];

123

www.manaraa.com

From types to type requirements 461

12 }
13 Node Part {
14 creationTime : int;
15 owner : Conveyor[0..1];
16 }
17 Edge MC(Machine.outMachines,Conveyor.inConveyors);
18 Edge CM(Conveyor.outConveyors,Machine.inMachines);
19 Edge iP(Part.owner,Conveyor.parts);
20 }
21

22 bind TokenHolder(ProductionSystem,
23 ProductionSystem::Conveyor,
24 ProductionSystem::Machine,
25 ProductionSystem::Part,
26 ProductionSystem::Conveyor::parts,
27 ProductionSystem::Machine::inConveyors,
28 ProductionSystem::Machine::outConveyors)

Listing 8 Binding the TokenHolder concept to the Production
System meta-model

5 Generic model management operations

We can define generic model management operations using
the variable types of a concept, instead of the types of a spe-
cific meta-model. In this way, the model management opera-
tion is applicable to instances of any meta-model that satisfies
the concept’s requirements. We next provide two examples,
which generalize those in Sects. 3.1 and 3.2. The first one
is a generic simulator and the second a generic code genera-
tor, both defined on the TokenHolder concept and hence
applicable to instances of any meta-model this concept can
be bound to.

5.1 Generic simulators

Listing 9 shows an excerpt of the EOL simulator for the
TokenHolder concept. The program first states that it
needs concept TokenHolder (line 1), therefore it will be
executed on instances of meta-models satisfying the concept.
Then, the program uses the generic types and features defined
by the concept. This program is actually an abstraction of that
of Listing 4, because this one does not require concrete meta-
model types. The working scheme is the same, but the oper-
ations enabled and fire are added to the node &P gets
bound to. The simulator can be used to execute any instance
of the ProductionSystem and PetriNet meta-mod-
els, hence being more reusable than the one in Listing 4.

1 @concept(name=TokenHolder,file=TokenHolder.mdepth)
2 operation main() {
3 var maxStep : Integer := 100;
4 var numStep : Integer := 0;
5 var enabled : Set(&P) := getEnabled();
6 while (enabled.size()>0 and numStep<maxStep) {
7 var t := enabled.random();
8 t.fire();
9 writeState(numStep);

10 numStep := numStep+1;
11 enabled := getEnabled();
12 }
13 }
14

15 operation writeState(step: Integer) {...}
16

17 operation getEnabled() : Set(&P) {
18 return &P.allInstances().select(t |
19 t.enabled()).asSet();
20 }
21

22 operation &P enabled() : Boolean {
23 return self.&inHolders->forAll(p |
24 p.&tokens.size()>0);
25 }
26

27 operation &P fire() {
28 for (p in self.&outHolders) {
29 p.&tokens.add(new &T);
30 }
31 for (p in self.&inHolders) {
32 var t : &T := p.&tokens.random();
33 p.&tokens.remove(t);
34 delete t;
35 }
36 }

Listing 9 Generic simulator over the TokenHolder concept

5.2 Generic code generators

In addition to simulators, we can also define generic code
generators over the TokenHolder concept. Listing 10
shows an EGL template over the concept. Compared to List-
ing 5 it can be noted that line 9 iterates on all instances of the
type &H gets bound to. The EGL template can only use the
features defined in the concept, and so we cannot use h.name
as holders are not required to have a name field. Instead, we
concatenate the name of the type &H gets bound to (by means
of h.type()) with an index, we store this in variable name in
line 10, and subsequently we use the variable in lines 12
and 14.

1 [%
2 @concept(name=TokenHolder,file=TokenHolder.mdepth)
3 %]
4 <?xml version="1.0" encoding="iso-8859-1"?>
5 <pnml>
6 <net id="Net-One" type="P/T net">
7 [%
8 var i : Integer := 0;
9 for (h in &H.allInstances()) {

10 var name : String := h.type().name.toString()+i;
11 %]
12 <place id="[%=name%]">
13 <name>
14 <value>[%=name%]</value>
15 </name>
16 <initialMarking>
17 <value>[%=h.&tokens.size()%]</value>
18 </initialMarking>
19 </place>
20 [%
21 i := i+1;
22 }
23 %]
24 ...

Listing 10 Generic code generator over the TokenHolder concept
(excerpt)

Altogether, we can apply the generic code generator
to the instances of meta-models like the Production-
System and PetriNet, hence obtaining meta-model
independence.

123

www.manaraa.com

462 J. de Lara, E. Guerra

However, the presented binding of concepts to meta-
models is somehow limited, as it requires an embedding
of the structure of the concept in the concrete meta-model.
A concept reflects a design decision, but other possibilities
may exist as well. For example, the TokenHolder con-
cept explicitly models tokens with a separate node, but some
meta-models could have modelled tokens with an integer
field in the holder node. Similarly, we have modelled the
relation between holders and processes with references, but
other more complex relations are possible as well, like using
intermediate nodes. Therefore, a more flexible mechanism is
desired which allows binding concepts to meta-models with
certain structural heterogeneities. The next section proposes
so-called hybrid concepts as one solution to this problem.

6 Hybrid concepts, static binding and concept
generalization

Structural concepts allow for the definition of generic model
management operations using the type variables of the con-
cept. Then, the concept can be bound to several meta-models,
and in this way the operation becomes reusable. However, the
binding requires an embedding of the concept in the meta-
model. One way to overcome this problem is through the def-
inition of suitable interfaces that (partially) hide the specific
structure of concepts behind appropriate operations. We call
such an operation-based requirement specification a hybrid
concept, as in addition to structural requirements it contains
the necessary operations to be defined by certain meta-model
elements.

For example, Listing 11 shows a hybrid concept that
requires two nodes: &H representing the role of holders and
&P representing the role of processes. However, instead of
demanding certain structural relations between holders and
processes, or between holders and tokens, their connectivity
is modelled by operations. Hence, the concept requires three
operations in holders: tokens() to query the number of
tokens in the holder, and addToken() and delToken()
to increase or decrease the number of tokens. For the process
role, the concept requires operations inputHolders()
and outputHolders() returning the collections of input
and output holders of a given process. These operations are
not interpreted as variables, and thus their names are not pre-
ceded by &, but operations with same name and signature
should be provided when performing the binding.

1 concept ProcessHolderB(&M, &H, &P) {
2 Model &M {
3 Node &H{
4 operation tokens() : Integer;
5 operation addToken();
6 operation delToken();
7 }
8 Node &P{
9 operation inputHolders() : Set(&H);

10 operation outputHolders(): Set(&H);
11 }
12 }
13 }

Listing 11 Hybrid concept ProcessHolderB

A generic simulator or code generator may then use the
operations declared in the hybrid concept. Listing 12 shows
the generic simulator using the hybrid concept of Listing 11,
omitting the body of operation main as it does not change.

1 @concept(name=ProcessHolderB,file=ProcHolderB.mdepth)
2 operation main() {
3 ...
4 }
5

6 operation getEnabled() : Set(&P) {
7 return &P.allInstances().select(t |
8 t.enabled()).asSet();
9 }

10

11 operation &P enabled() : Boolean {
12 return self.inputHolders()->forAll(p|p.tokens()>0);
13 }
14

15 operation &P fire() {
16 for (p in self.outputHolders()) p.addToken();
17 for (p in self.inputHolders()) p.delToken();
18 }

Listing 12 Generic simulator over hybrid concept TokenHolderB

A hybrid concept may require structural elements, in
addition to Nodes, just like structural concepts. However,
its power comes from being able to hide accidental details
required from specific meta-models. In this way, the hybrid
concept for Token-Holders has a higher-level of abstraction
than the structural one, as it imposes less structural require-
ments to the bound meta-models. As a drawback, the meta-
models are required to implement the operations specified
in the concept. In MetaDepth, these operations are defined
in a separate file which is indicated when establishing the
binding. As an example, Listing 13 shows the binding of our
hybrid concept to the Petri nets meta-model shown in List-
ing 2. Below, Listing 14 shows the implementation of the
operations for the bound meta-model.

1 bind ProcessHolderB(PetriNet,
2 PetriNet::Place,
3 PetriNet::Transition)
4 requires "PetriNetOperations.eol"

Listing 13 Binding theProcessHolderB hybrid concept to the Petri
nets meta-model

1 operation Place tokens() : Integer {
2 return self.tokens.size();
3 }
4 operation Place addToken() {
5 self.tokens.add(new Token);
6 }
7 operation Place delToken() {
8 self.tokens.remove(self.tokens.random());
9 }

10 operation Transition inputHolders() : Set(Place) {
11 return self.inPl;

123

www.manaraa.com

From types to type requirements 463

12 }
13 operation Transition outputHolders() : Set(Place) {
14 return self.outPl;
15 }

Listing 14 Operations needed to bind the hybrid concept
ProcessHolderB to the Petri nets meta-model

To illustrate the versatility of our hybrid concept, assume
we want to bind it to a different meta-model for Petri nets
where tokens are modelled with an integer field tokens in
node Place. In this case, the only difference with respect
to the previous example is that the operations implemented
in Placewould be different. These operations are shown in
Listing 15.

1 operation Place tokens() : Integer {
2 return self.tokens;
3 }
4 operation Place addToken() {
5 self.tokens := self.tokens+1;
6 }
7 operation Place delToken() {
8 self.tokens := self.tokens-1;
9 }

Listing 15 Some operations needed to bind the hybrid concept
ProcessHolderB to a variation of the Petri net meta-model where
tokens are modelled as an integer field

Altogether, hybrid concepts abstract from accidental
details by encapsulating them in suitable operations, there-
fore being applicable to a larger set of meta-models. How-
ever, they leave more burden to the reusers of the generic
operations, as they need to provide an implementation for
the operations (even though sometimes they are straightfor-
ward, like in Listings 14 and 15). In this sense, hybrid con-
cepts act as interfaces (in the sense of e.g. Java interfaces)
for meta-models.

This situation is illustrated in Fig. 10, where the upper
part shows the elements defined by the developer of the
generic model management operation, and the lower part
the elements that the user of the generic operation defines. In
particular, the user must implement the required operations
for his specific meta-model. The next subsection will show
how to facilitate the binding of hybrid concepts to arbitrary

Developer
of Generic
Operation

User
of Generic
Operation

Hybrid
Concept BC

Generic
Behaviour

«r
eq

ui
re

s»

Meta-
Model

«binds»

Model

Implementation
of BC’s
required

operations«r
eq

ui
re

s»

executes on «conforms to»

Fig. 10 Binding a hybrid concept

meta-models by providing alternative generic implementa-
tions for the required operations, so that they can be directly
reused.

6.1 Static bindings: binding hybrid concepts to structural
concepts

A hybrid concept can be bound to many structurally differ-
ent meta-models. For instance, in our example, one meta-
model may choose to represent tokens as an integer field,
and a different meta-model as a reference to a node for the
tokens. Each possibility will require the user of the concept
to implement a different version of the concept’s operations.
To lighten this work, the developer of the concept may antici-
pate possible meta-model structures and implement the oper-
ations according to them. In particular, as Fig. 11 shows, he
can build a structural concept for each foreseen meta-model,
bind the hybrid concept to the structural one, and implement
the operations using the types of the structural concept. We
call such a binding from a hybrid to a structural concept a
static binding. We also say that the structural concept and
their operations realize the hybrid concept. From a technical
perspective, this solution just makes use of another level of
indirection to achieve its goals.

This approach has several advantages. First, users of the
hybrid concept do not need to implement its operations, but
they can select a suitable structural concept implementing
them. If the user does not find a structural concept that fits
his meta-model, then he will have to bind the hybrid concept
and implement its operations. This implementation may be
lifted to become a new structural concept realizing the hybrid
one. Second, the generic model management operation is still
defined only once, over the hybrid concept.

As an example, Listing 16 shows a structural concept for
the Token-Holder semantics where tokens are represented as
integers. The listing also includes the binding of the hybrid

Hybrid
Concept BC

Generic
Behaviour

«requires»

realization

Meta-
Model-1

«binds»

Model

«conforms to»
executes on

Structural
Concept

SC’ «r
eq

ui
re

s»

Meta-
Model-n

«binds»

Model

«conforms to»
executes on

Structural
Concept

SC«r
eq

ui
re

s»

«binds»

realization

«binds»

Implementation
of BC’s
required

operations

Implementation
of BC’s
required

operations

Developer
of Generic
Operation

User
of Generic
Operation

Fig. 11 Realizations: binding hybrid to structural concepts

123

www.manaraa.com

464 J. de Lara, E. Guerra

concept in Listing 11 to this new structural concept. Below,
Listing 17 contains the generic implementation of the opera-
tions required by the hybrid concept in terms of the structural
concept.

1 concept ProcessHolderInt(&M, &H, &P, &tokens,
2 &inHolders, &outHolders) {
3 Model &M {
4 Node &H {
5 &tokens : int;
6 }
7 Node &P {
8 &inHolders : &H[*];
9 &outHolders: &H[*];

10 }
11 }
12 }
13

14 bind ProcessHolderB(ProcessHolderInt,
15 ProcessHolderInt::&H,
16 ProcessHolderInt::&P)
17 requires "ProcessHolderIntOperations.eol"

Listing 16 Structural concept and static binding to hybrid concept

1 operation &H tokens() : Integer {
2 return self.&tokens;
3 }
4 operation &H addToken() {
5 self.&tokens := self.&tokens+1;
6 }
7 operation &H delToken() {
8 self.&tokens := self.&tokens-1;
9 }

10 operation &P inputHolders() : Set(&H) {
11 return self.&inHolders;
12 }
13 operation &P outputHolders() : Set(&H) {
14 return self.&outHolders;
15 }

Listing 17 Operations required by the hybrid concept expressed over
the structural concept ProcessHolderInt

The availability of several realizations for the same hybrid
concept provides a kind of overloading mechanism for the
required operations in the hybrid concept. In this sense, a
generic operation defined over a hybrid concept is similar
to the template method design pattern [23], as the required
operations will be provided with an implementation either in
realizations or when binding the concept to a specific meta-
model. Altogether, realizations allow retaining the advanta-
ges of a more abstract and reusable concept (using hybrid
concepts), as well as an easy way to reuse the generic behav-
iour (by a suitable realization implementing the operations
required by the hybrid concept).

6.2 Concept specialization

Similar to class or interface inheritance in object-oriented
programming languages, we support concept specialization
as a way to construct general/specific hierarchies of concepts,
where the generic behaviour defined over a concept is appli-
cable to all specializations of the concept as well. Concept

specialization is also a means to construct concepts incre-
mentally.

As an example, Listing 18 shows an extension of the
hybrid concept ProcessHolderB defined in Listing 11.
The purpose of the new concept is to characterize the Token-
Holder semantics considering time, so that processes do not
fire immediately but after a certain time elapse. The special-
ization TimedProcessHolder requires for this purpose
an additional operation getTime().

1 concept TimedProcessHolder(&M,&H,&P)
2 extends ProcessHolderB(&M,&H,&P){
3 Model &M {
4 Node &P{
5 operation getTime() : Real;
6 }
7 }
8 }

Listing 18 Extending the hybrid concept ProcessHolderB

In this way, we can apply the simulator for Process-
HolderB to instances of meta-models bound with con-
cept TimedProcessHolder. This simulator makes an
abstraction providing an untimed simulation of the model.
One can define a simulator over theTimedProcessHold-
er concept as well. Actually, such a simulator needs to
use events, event lists and further structures which are not
required by the concept, but which are needed for the simu-
lation. We will discuss in Sect. 8 the use of semantic mixin
layers as a way to add such structure to meta-models consis-
tent with TimedProcessHolder.

7 Model templates

Concepts express requirements of models and meta-mod-
els. Using such an abstraction mechanism, behaviours and
transformations can be expressed in a type independent way,
becoming more reusable. However, genericity can be applied
not only to behaviours, but to models and meta-models as
well.

As already noticed in the example of Listing 3, it is desir-
able to have a means to define libraries of model fragments
with well defined interfaces, so that users can be more pro-
ductive when building models. With such a mechanism,
models could be built by selecting, instantiating and inter-
connecting model fragments. In this section, we show how
model templates realize this idea. We use model templates to
define reusable models, where their interface requirements
are specified by means of concepts. Hence, compositionality
is obtained without the need to modify the meta-models.

Up to now we have used concepts to express requirements
for meta-models, but we can use them to define requirements
for models as well. This is illustrated in Fig. 12. A concept C
at the model level expresses a number of requirements that are
fulfilled by a (possibly infinite) set of models L(C). We say

123

www.manaraa.com

From types to type requirements 465

Meta-level n
Meta-ModelMeta Model

«typed on»

«conforms to»

Meta-level n-1
Concept C

(model level)

«defines»
L(C)

«binds»

Meta-Model
&MModel-1

«belongs to» Model-i

Fig. 12 Scheme of concepts for models

that any model in L(C) can be bound to the concept C . The
concept itself uses types from some meta-model (depicted
as relation “typed on”), of which the models in L(C) are
instances. Whereas the relation “conforms to” indicates that
the models use the types of the meta-model and satisfy all
its integrity constraints, relation “typed on” indicates that
the concept uses the types of the meta-model but it is not
required to satisfy its integrity constraints. Thus, a concept
for models is typed on a given meta-model but might violate,
e.g., some of the minimum cardinality constraints imposed
by the meta-model, hence not being conformant to it.

Model templates use concepts to express requirements on
the parameters they receive. They declare a number of vari-
ables which can be checked against concepts. In this way,
when the templates are instantiated, an implicit binding pro-
cess checks whether the actual parameters satisfy the con-
cepts. A template T requiring concept C defines a language
L(T) of all its possible instantiations using as parameters any
element of L(C), the language defined by the concept. In this

way, a template can be seen as a function L(C)
T→ L(T).

The possibility of instantiating templates is very inter-
esting for modelling, because we can express patterns and
generic model components using templates, which we can
later instantiate and combine. Such model templates define
a generic interface through appropriate concepts expressing
the requirements for a correct interconnection. This obser-
vation is depicted in Fig. 13. The picture shows a model
template T , which is designed to be composable by import-
ing another model, and possibly performing some connec-
tions to elements of that other model. Instead of specifying
the concrete model to be imported, template T imports any
model that satisfies the concept C . This concept expresses the
requirements for composability of these two models. Gene-
ricity is obtained because we are able to compose template
T with any model in L(C). Instantiating T means choos-
ing one model M ∈ L(C) (i.e. a model bound to C) for
the composition. The template definition and its instances
are, therefore, at the same meta-level. In this way, concepts
provide a non-intrusive means to express interface require-

Model

Template T

Meta-Model

«typed on»

Concept C
(interface

requirs. for T)

«typed on»

Meta-Model
&M

«defines»

Model-1

L(C)

«requires»

Model T-instModel M

«imports»

«belongs to»

«imports»

«instantiates»

template
definition

template
usage

Meta-level n

Meta-level n-1

Fig. 13 Scheme of model templates

ments, because there is no need to modify the meta-models.
It is also possible that a model template uses several concepts
for expressing requirements for several interfaces.

Please note that instantiating a model template might yield
a model that is not conformant to the meta-model. This is so
as the template model typically imports some other variable
models received as parameters, and the result of this import
may violate some integrity constraint. While in MetaDepth
one can rely on a verification procedure after the import
operation takes place, alternatively, the concepts could also
encode the conditions needed from the model parameters to
yield a correct instantiation.

Consider again the Producer–Consumer Petri net model
presented in Fig. 3. The model would benefit from a higher-
level representation enabling the definition of processes (for
the producer and the consumer) as well as of buffers. For
this purpose, we can define two model templates, acting like
model components or modelling patterns that the modellers
can use to construct their models.

Listing 19 shows how to specify these templates with
MetaDepth. The first templateBuff2 (lines7-14) defines
a generic buffer with one input and one output transition.
These two transitions (&Tri, &Tro), together with their
owning models (&PNi, &PNo), are parameters of the tem-
plate. The template imports both received models (line 10),
declares one place (line 11) and connects it to the received
transitions (lines 12-13). In addition, the template requires
in lines 8-9 that the input parameters satisfy the concept
SimpleTrans. The concept, defined in lines1-5, requires
the transition to have one input and one output place, checked
by the EOL constraint in line 5.

1 concept SimpleTrans(&M, &T) {
2 PetriNet &M {
3 Transition &T {}
4 }
5 } where $&T.inPl.size()=1 and &T.outPl.size()=1$
6 // ---------------------------
7 template<&PNi,&Tri,&PNo,&Tro>

123

www.manaraa.com

466 J. de Lara, E. Guerra

8 requires SimpleTrans(&PNi,&Tri),
9 SimpleTrans(&PNo,&Tro)

10 PetriNet Buff2 imports &PNi,&PNo{
11 Place Buffer {}
12 ArcPT (Buffer, &Tro);
13 ArcTP (&Tri, Buffer);
14 }
15 // ---------------------------
16 template<>
17 PetriNet TwoStateProc {
18 Place p1 {}
19 Place p2 {}
20 Transition t12 {}
21 Transition t21 {}
22 ...
23 }
24 // ---------------------------
25 TwoStateProc<> Producer;
26 TwoStateProc<> Consumer;
27 Buff2<Producer,Producer::t12,Consumer,Consumer::t12>
28 ProducerConsumer;

Listing 19 Defining and using model templates

The second template, TwoStateProc in lines 16-23,
defines a two-state process. In this case, the template has no
parameters and acts like a pattern that can be instantiated
by the modeller. In a realistic scenario, we may like to pass
as parameters the names of the places, but currently Met-
aDepth does not support template parameters of primitive
data types, which is left for future work.

Lines 25-28 instantiate the templates. The resulting
model ProducerConsumer is equivalent to the one in
Listing 3. However, the use of templates has raised the
abstraction level of the model, which is now more concise,
and we have reused the definition of the template Two-
StateProc. Altogether, model templates enable defining
component and pattern libraries for domain-specific lan-
guages. Hence, a component designer would identify or
design generic, useful model components that software engi-
neers would be able to reuse and connect to build their
models.

7.1 Generic model templates

Model templates are a way to capitalize on knowledge about
useful domain-specific primitives, which are captured in
terms of model fragments. They make use of concepts at
the model level to express requirements on their intercon-
nection interfaces. However, there is still room for further
abstraction, as model templates still make use of types from
specific meta-models. Hence, we can define generic model
templates, which are templates that use the type variables
from concepts. These templates express common patterns
applicable to families of meta-models. The scheme of this
approach is shown in Fig. 14.

As a difference to Fig. 13, in Fig. 14 the generic model
template T is typed on a concept C ′, instead of on a specific
meta-model. In this way, once we bind the concept C ′ to
a specific meta-model, we can instantiate the generic model

Meta-level n

Concept C’ Meta-model
«binds»

«typed on»

Concept C Meta model

Concept

Template T
generic
template

Meta-level n-1

Template T

«instantiates»

template
definition

generic

«conforms to»

Model T-inst
generic

template
usage

Fig. 14 Scheme of generic model templates

template T . Moreover, generic model templates are normally
defined over structural concepts, to characterize as tightly as
possible the represented family of meta-models.

Listing 20 shows the generalization of the two-state pro-
cess template shown in Listing 19. This time the template is
defined over the TokenHolder concept and hence can be
applied to the ProductionSystem meta-model as well.
This example shows that it is feasible to define patterns
for domain-specific languages in a meta-model independent
way.

1 template<>
2 requires TokenHolder(&M, &H, &P, &T, &tokens,
3 &inHolders, &outHolders)
4 &M TwoStateProc {
5 &H p1 {}
6 &H p2 {}
7 &P t12 {}
8 &P t21 {}
9 ...

10 }
11 // ---------------------------
12 bind TokenHolder(ProductionSystem,
13 ProductionSystem::Conveyor,
14 ProductionSystem::Machine,
15 ProductionSystem::Part,
16 ProductionSystem::Conveyor::parts,
17 ProductionSystem::Machine::inConveyors,
18 ProductionSystem::Machine::outConveyors)
19 TwoStateProc<> Producer;
20 TwoStateProc<> Consumer;
21 Buff2<Producer,Producer::t12,Consumer,Consumer::t12>
22 ProducerConsumer;

Listing 20 Defining and using generic model templates

8 Meta-model templates and semantic mixin layers

Templates are not only useful to define generic models, but
can also be applied to meta-models to provide an extensi-
ble way of defining languages, similar to mixin layers [44].
In our context, a mixin layer is a meta-model containing a set
of auxiliary elements, which are needed to implement some
functionality. These mixin elements are added to a given
meta-model by extending the elements passed as parame-
ters of the mixin. Here we explore semantic mixin layers,

123

www.manaraa.com

From types to type requirements 467

which are meta-model templates declaring elements needed
to express the behaviour of meta-models. These templates
are complemented with behavioural specifications, defined
over the generic types of the mixin.

To define the semantics of a language, it is often the case
that its meta-model has to be extended with auxiliary classes
and elements needed for the simulation. For example, when
simulating an automaton, we need a pointer to the current
state and the sequence of symbols to be parsed. When simu-
lating an event system, we need a list of the scheduled events
ordered by their simulation time. These extra elements are
not part of the language, but of the simulation infrastruc-
ture. If the language for specifying the semantics is powerful
enough, we can use it to create the required simulation infra-
structure. For instance, EOL provides data structures like
Collection or Map that can be used for that purpose.
However, some specification languages lack this expressivi-
ty (e.g. graph transformation), so that in general, a simulation
infrastructure needs to be modelled and rendered.

The working scheme of semantic mixins is shown in
Fig. 15. It shows a mixin layer template T that is used to
extend the meta-models of a semantic family characterized
by concept C. Hence L(C) contains all meta-models satisfy-
ing the concept requirements. The semantic mixin T extends
any such meta-models with appropriate extra features using
an extension mechanism similar to package merge [11,18].
However, instead of extending a particular meta-model in
L(C), the mixin extends any meta-model in L(C), chosen
when instantiating the mixin. Please note that a mixin and its
instantiation for a particular meta-model belong to the same
meta-level. The mixin T has an associated behaviour, defined
on the generic types of the mixin and its associated con-
cept. This behaviour becomes available for any meta-model
to which the mixin is applied.

As an example, assume we want to define a simulator
for timed token-holder languages. These languages follow
a Token-Holder semantics, but transitions fire after a given
delay. Hence, we can characterize these languages with the

Meta-Model
&M

Template T
semantic

mixin layer

Concept C
(requirs. for

semantic family)

«defines»

Meta-Model

«requires»

«extends»

Meta-Model

T instance

Simulator

for T
«requires»

«executes on»

Model

«conforms to»

L(C)

«instantiates»

A
Meta-Model

«extends»

«belongs to»

template
definition

template
usage

Meta-level n

Meta-level n-1

Fig. 15 Working scheme of semantic mixin layers

TimedProcessHolder hybrid concept of Listing 18. The
simulator needs storing a list of the firings that are currently
scheduled, together with the transition and tokens involved
in each firing. These extra elements are not part of the timed
token-holder language, but devices needed only for the sim-
ulation. Hence, a separate mixin layer can incorporate these
elements into the language definition in a non-intrusive way.

Lines 1-19 in Listing 21 show the template implement-
ing the mixin layer. It declares the necessary infrastructure
to simulate instances of meta-models that satisfy the concept
TimedProcessHolder, therefore the template definition
requires this concept. The template defines a family of meta-
models which extend any meta-model &M satisfying concept
TimedProcessHolder with the machinery needed for
simulation. In particular, the template extends the received
meta-model &M with a node Event to store the events, and
a singleton node FEvtList to handle the event list (this is
indicated with the cardinality interval [1] in line 7). More-
over, the node with role &P (process) is added a collection
evts storing the scheduled events associated with the tran-
sition.

1 template <&M,&H,&P>
2 requires TimedProcessHolder(&M,&H,&P)
3 Model TimedSched extends &M {
4 Node &P {
5 evts: Event[*];
6 }
7 Node FEvtList[1] {
8 first: Event[0..1];
9 time : double;

10 }
11 Node Event {
12 time: double;
13 next: Event[0..1];
14 proc: &P;
15 }
16 Edge ProcTm(&P.evts, Event.proc) {
17 t : double;
18 }
19 }
20 // ---------------------------
21 TimedSched<ProductionSystem,
22 ProductionSystem::Conveyor,
23 ProductionSystem::Machine> SimProdSys
24 requires "ProdSystemsOps.eol"

Listing 21 Semantic mixin layer adding infrastructure to simulate
concept TimedProcessHolder

Now, assume we add a field delay to the Machine
node in Listing 8, and define the operations required by the
TimedProcessHolder concept. Then, the meta-model
ProductionSystem (together with such operations) is
a valid binding for the concept TimedProcessHolder,
and hence we can instantiate the mixin layer for the meta-
model to extend it with the simulation infrastructure. The
instantiation is declared in lines 21-24 of Listing 21.

Behaviours associated with semantic mixin layers use the
generic types of the template. Listing 22 shows an excerpt of
the simulator associated with the TimedSchedmixin layer.
The simulator uses a FEvtList object (line 3) to keep the

123

www.manaraa.com

468 J. de Lara, E. Guerra

current simulation time and the list of scheduled events. The
list of events is initialized with the set of active transitions
(line 5). The main simulation loop (lines 7-11) advances
the simulation time to the time of the first event in the list,
fires the transition associated with the event, and schedules
new events (this latter is not shown in the listing).

1 @template(name=TimedSched)
2 operation main() {
3 var FEL := new FEvtList;
4 FEL.time := 0;
5 FEL.schedule(getEnabled());
6 var finish: Boolean := false;
7 while (not finish) {
8 FEL.time:= FEL.first.time;
9 FEL.first.proc.fire();

10 ...
11 }
12 }

Listing 22 Simulator for the TimedSched mixin layer (excerpt)

Associating the simulator to the mixin layer has the
advantage that the simulator can be reused with any meta-
model to which this mixin layer is applied (i.e. any meta-
model fulfilling the TimedProcessHolder concept),
like SimProdSys in Listing 21, hence obtaining highly
reusable simulator specifications.

9 Further examples

Next we provide further examples to illustrate the presented
techniques and demonstrate their applicability.

9.1 Automata model templates

If we are interested in working with deterministic finite state
automata (DFSA), we can define them as shown in List-
ing 23. We have opted for defining two separate meta-mod-
els, one with the definition of the input alphabet (contain-
ing the definition of symbols or events), and the other one
with the automaton itself. The id annotation on the value
field of Symbol (line 3) ensures that each symbol has a
different value. The DFSA meta-model imports the Input
meta-model in line 7, and includes two global constraints in
lines 25-28 to ensure a unique initial state and one or more
final states. The State node contains two local constraints
(nonRepSymb and allSymb) in lines 14-18 to ensure
determinism.

1 Model Input {
2 Node Symbol {
3 value : String{id};
4 }
5 }
6

7 Model DFSA imports Input {
8 Node State {
9 name : String {id};

10 ins : State[*];
11 outs : State[*];
12 initial: boolean = false;
13 final : boolean = false;
14 noRepSymb: $self.Transitionouts.collect(t |
15 t.symbol).asSet().size()=
16 self.Transitionouts.size()$
17 allSymb: $Symbol.allInstances().size =
18 self.Transitionouts.size()$
19 }
20

21 Edge Transition(State.ins, State.outs) {
22 symbol : Symbol;
23 }
24

25 oneInitial : $State.allInstances().one(s |
26 s.initial=true)$
27 someFinal : $State.allInstances().exists(s |
28 s.final=true)$
29 }

Listing 23 Deterministic automata meta-model

We can instantiate the DFSA meta-model to define auto-
mata. For instance, Listing 24 shows an automaton over the
binary alphabet accepting binary words ending in 1.

1 Input Binary {
2 Symbol Zero { value = "0"; }
3 Symbol One { value = "1"; }
4 }
5

6 DFSA Accept2nd imports Binary {
7 State Initial { name = "i"; initial = true; }
8 State Final { name = "f"; final = true; }
9

10 Transition t1(Initial,Initial) { symbol = Zero; }
11 Transition t2(Initial,Final) { symbol = One; }
12 Transition t3(Final,Initial) { symbol = Zero; }
13 Transition t4(Final,Final) { symbol = One; }
14 }

Listing 24 An automaton model

However, one soon realizes that the Accept2nd model
is unnecessarily concrete, in the sense that the same autom-
aton would work with any alphabet with two symbols.
Thus, we decide to convert the automaton into a template
model that requires the input alphabet to have exactly two
symbols, which is specified by means of a concept. List-
ing 25 shows the realization of this idea. Lines 1–6 define
a concept requiring an alphabet with exactly two symbols,
and lines 8-18 define a template model over the con-
cept. The template is a generalization of the model in List-
ing 24. Then, the user of the generic automaton can easily
instantiate the template using different alphabets, as lines
25-35 show. This approach provides additional flexibil-
ity, as it is easy to exchange the use of the different sym-
bols in the alphabet. For example, the instantiation in lines
33-35 creates an automaton that accepts the zero-termi-
nated binary words. Please note that the meta-model remains
unchanged, so that this template-based technique is non-
intrusive.

1 concept alpha2symb (&I, &S1, &S2) {
2 Input &I {
3 Symbol &S1{}

123

www.manaraa.com

From types to type requirements 469

4 Symbol &S2{}
5 }
6 } where $Symbol.allInstances().size()=2$
7

8 template<&I, &s1, &s2>
9 requires alpha2symb(&I,&s1,&s2)

10 DFSA Accept2nd imports &I {
11 State Initial { name = "i"; initial = true; }
12 State Final { name = "f"; final = true; }
13

14 Transition t1(Initial,Initial) { symbol = &s1; }
15 Transition t2(Initial,Final) { symbol = &s2; }
16 Transition t3(Final,Initial) { symbol = &s1; }
17 Transition t4(Final,Final) { symbol = &s2; }
18 }
19

20 Input AlphaBeta {
21 Symbol Alpha { value = "a"; }
22 Symbol Beta { value = "b"; }
23 }
24

25 Accept2nd<AlphaBeta,
26 AlphaBeta::Alpha,
27 AlphaBeta::Beta> ab;
28

29 Accept2nd<Binary,
30 Binary::Zero,
31 Binary::One> zeroOne;
32

33 Accept2nd<Binary,
34 Binary::One,
35 Binary::Zero> oneZero;

Listing 25 Turning the automaton into a template

Altogether, this example shows the usefulness of concepts
to define model templates. Such model templates enable the
construction of libraries of reusable model fragments.

9.2 Questionnaires and timed automata

In this section, we demonstrate the incremental construc-
tion of meta-models, as well as the rapid definition of their
semantics and associated behaviour through concepts and
genericity.

Assume we want to build questionnaires made of ques-
tions with a number of answers, some of them being correct
and redirecting to a new question until the end of the ques-
tionnaire is reached. A meta-model to describe such ques-
tionnaires is shown in Listing 26. This meta-model shares
certain characteristics with the one for automata presented
in previous section, as Questions can be interpreted as
states, and Answers as transitions.

1 Model Questionnaire {
2 Node Quiz {
3 title : String;
4 start : Question;
5 }
6

7 Node Question {
8 text : String;
9 options : Answer[*];

10 }
11

12 Node Answer {
13 ident : String;
14 text : String;
15 correct : boolean = false;

16 target : Question;
17 }
18 }

Listing 26 Meta-model for questionnaires

As previously stated, concepts allow the definition of
generic simulators and code generators, applicable to
instances of all meta-models to which we can bind the
concepts. This can be used for the rapid definition of seman-
tics for domain-specific languages, by defining suitable con-
cepts and associated behaviour for semantic families. Up to
now, we have defined concepts for Token-Holder semantics,
automata semantics, timed automata, queueing networks and
event-scheduling semantics. For example, Listing 27 shows
a hybrid concept for automata-like languages for which we
have built a simulator. The concept demands the existence
of two kinds of node: states and events. The former must be
equipped with operations to check whether states are initial
or final, and to obtain its name and the target state given an
event. Events must define an operation to obtain their identity,
and another one to check whether two events are the same.

1 concept StateTransition(&M, &State, &Event) {
2 Model &M {
3 Node &State{
4 operation isInitial() : boolean;
5 operation isFinal() : boolean;
6 operation getName() : String;
7 operation getNext(e : &Event) : &State;
8 }
9 Node &Event{

10 operation getId() : String;
11 operation equivs(e: &Event) : boolean;
12 }
13 }
14 }

Listing 27 Concept for automata semantics

The previous concept can be easily bound to the meta-
models of Listings 23 and 26, once the concept operations
are defined for the meta-models. For the latter meta-model,
Question plays the role of State and Answer of
Event.

Many times, timed semantics can be expressed as an exten-
sion of untimed semantics. For example, Listing 28 presents
a concept expressing the commonalities of languages behav-
ing like simple timed automata, which we call automata with
timeout. These are an extension of normal automata with spe-
cial transitions having a timeout. The automaton is forced to
take a timeout transition when it stays in the source state a
number of time steps equal to the specified timeout. More-
over, transition labels can be input or output, enabling the
synchronization of concurrent automata through the same
transitions. These automata are a simplification of the classi-
cal timed automata [1]. In our case, we have built theTimed-
StateTransition concept incrementally, by extending
concept StateTransition.

1 load "StateTransition"

123

www.manaraa.com

470 J. de Lara, E. Guerra

2

3 concept TimedStateTransition(&M, &State, &Event)
4 extends StateTransition(&M, &State, &Event)
5 {
6 Model &M {
7 Node &State{
8 operation getMaxDelay() : Integer;
9 operation getTimeoutState() : &State;

10 }
11 Node &Event{
12 operation isInput() : boolean;
13 }
14 }
15 }

Listing 28 Concept for timed automata semantics

In a similar way, we can define a meta-model template
like the one in Listing 29 to increment meta-models con-
forming to the StateTransition concept with the nec-
essary timing elements. The template extends State with
a maximum time and a timeout state. For events, it adds a
flag indicating whether they are input or output events, so
that we can build networks of models synchronized through
events. Lines 15-20 show two instantiations of the tem-
plate with the Questionnaire and DFSA meta-models.
This permits designing questionnaires with a maximum time
to respond each question. If such time is consumed, the user
is redirected conveniently to a different question. Moreover,
we can use the extended DFSA meta-model to describe user
models responding to the questionnaires. In particular, users
will produce answers (output events) which will get synchro-
nized with the answers that the questionnaire expects (input
events).

1 template <&M,&State,&Event>
2 requires StateTransition(&M, &State, &Event)
3

4 Model TimeExt extends &M {
5 Node &State {
6 maxTime : int = 0;
7 timeOut : &State[0..1];
8 }
9

10 Node &Event {
11 isInput : boolean = false;
12 }
13 }
14

15 TimeExt <Questionnaire,
16 Questionnaire::Question,
17 Questionnaire::Answer> TimedQuiz;
18 TimeExt <DFSA,
19 DFSA::State,
20 DFSA::Symbol> TimeoutAutomata;

Listing 29 Meta-model template for timeout automata

We must implement the operations of theTimedState-
Transition concept to bind it with the TimedQuiz and Ti-
meoutAutomata meta-models in the previous listing. These
operations can be defined over the template, obtaining a static
binding as explained in Sect. 6.1. In this way, we can sim-
ulate both meta-models using our generic simulator. Alter-
natively, we can use a generic code generator defined over

the concept to produce code for analysis tools, like UP-
PAAL [5]. This is a tool enabling the visual simulation of
timed automata, as well as its analysis using temporal logic.
Listing 30 shows an excerpt of the generic code generator
which is in charge of generating appropriate tags to position
the nodes of the automata. Being this generator defined over
the TimedStateTransition concept, we can synthe-
size code from instances of both TimedQuiz and TimeoutAu-
tomata.

1 [%
2 @concept(name=TimedStateTransition,file=TST.mdepth)
3 %]
4 <?xml version="1.0" encoding="utf-8"?>
5 <!DOCTYPE nta PUBLIC ’-//Uppaal Team//...’
6 ’http://www.it.uu.se/...flat-1_1.dtd’>
7 <nta>
8 ...
9 [% var ident : Integer := 0;

10 var yPos : Integer := -166;
11 var initIdent : Integer := 0;
12 for (s in &State.allInstances()) {
13 yPos := yPos+ident*60; %]
14 <location id="id[%=ident%]" x="-224" y="-136">
15 <name x="-234" y="[%=yPos%]">Q[%=ident%]</name>
16 </location>
17 [% s.~identif := ident; s.~yPos :=yPos;
18 if (s.isInitial()) { initIdent := ident; }
19 ident := ident+1;
20 } %]
21 ...
22 </nta>

Listing 30 Generic code generator for concept
TimedStateTransition

Timed automata have compositional semantics as we can
build networks of automata that synchronize by sending and
receiving events. Our TimedStateTransition concept
permits composition without being tied to the specific meta-
model used for modelling. Hence, we can synthesize code
from a network of models built using the TimeQuiz meta-
model for the questionnaires and the TimeoutAutomata meta-
model for the user behaviour. Afterwards, we can use our
generic code generator to synthesize code for UPPAAL and
perform analysis. Figure 16 shows a screenshot of UPPAAL
being used to analyse a questionnaire with a particular user
model. We have used the analysis capabilities of UPPAAL
to check, e.g., whether a particular questionnaire is solvable
with a given user strategy.

Altogether, this example shows how to incrementally aug-
ment meta-models with additional elements, e.g. incorporat-
ing them additional structure to express more sophisticated
semantics. In particular, we have seen that timing semantics
can be incorporated in this way to untimed formalisms. We
have also seen that concepts can be extended in a similar
way (e.g. the TimedStateTransition concept extends
StateTransition). The definition of generic behaviours
and code generators allows their application to families of
meta-models, obtaining interoperability as well.

123

www.manaraa.com

From types to type requirements 471

Fig. 16 Analysis of a
Quiz+User model using
UPPAAL

10 Related work

The use of templates in modelling is not new. They are
already present in the UML 2.0 specification [39], as well
as in approaches like Catalysis’ model frameworks [19]
and package templates, and the aspect-oriented meta-mod-
elling approach of [11]. Interestingly, while all of them con-
sider templates for meta-models or class diagrams, none
considers concepts to express the requirements of type
parameters.

The UML 2.0 proposes classifier (e.g. class, component),
package, collaboration and operation templates which are
provided with a list of formal parameters representing clas-
sifiers, values or features (i.e. properties and operations).
A template binding specifies the substitution of actual param-
eters for the formal parameters of the template, and has the
same semantics as if the contents of the template were cop-
ied into the bound element, substituting the formal template
parameters by the corresponding actual parameters in the
binding [39]. Hence, UML lacks support to express require-
ments for the formal parameters in a non-intrusive way, as
supported by the notion of concept we have presented here.
In the context of UML 2, concepts would be a valuable
means to express the requirements that parameter instantia-
tions should fulfil in order for a template binding to be correct.
Currently, this can be achieved only by requiring that some
formal parameter conforms to a specific class, in a similar
way as in Java, where a parameter may be required to imple-
ment a certain interface. However, if the template has several
parameters, it is often not sufficient to demand requirements
for each one of them in isolation, but for the set of param-

eters as a whole. Note also that the genericity provided by
UML is mainly directed to generic models, but our approach
also allows the definition of generic behaviours. Although
package templates were incorporated into the UML 2.0 spec-
ification, the MOF [40] does not consider genericity at the
meta-model or model level.

Catalysis’ model frameworks [19] are parameterized
packages that can be instantiated by name substitution.
Hence, they are similar to our meta-model templates. The
package templates of [11] are based on those of Catalysis,
and are used to define languages in a modular way. They are
based on string substitution, as the template parameters are
strings that are substituted in the template definition. This
approach is realized in the XMF tool [12].

Our work extends the mentioned approaches in several
ways. First, we can apply templates not only to meta-mod-
els, but also to models, as seen in Sect. 7 (cf. Listing 19).
Actually, as our framework supports an arbitrary number of
meta-models through potency [14], we could apply templates
at any meta-level. Second, our approach is based on concepts,
which helps in expressing requirements on template param-
eters. In addition, we can define behaviour for concepts and
templates (in particular with semantic mixin layers), inde-
pendently of meta-models. Third, our approach provides a
stronger support for templates, as our template parameters
are model elements whose requirements can be expressed by
concepts. This permits type checking at the template level.
Finally, whereas we consider the definition of generic behav-
iour, this is missing in other works [11,19,39]. This paper
also extends our own previous work on adding genericity to
a model management framework [22,41], where we explored

123

www.manaraa.com

472 J. de Lara, E. Guerra

the use of structural concepts to define model transformation
operations, but we did not explore more flexible forms of
concepts like hybrid concepts or genericity for models and
meta-models.

Even though our work is strongly influenced by the generic
programming community, generic (meta-)modelling has fun-
damental differences with generic programming [25,29].
The first one refers to the level of granularity, as generic pro-
gramming deals with generic classes or functions, whereas
we consider generic (meta-)models which include several
modelling elements, more similar to mixin layers. Second,
while the purpose of programming concepts is to identify
whether a class defines certain operations, structural con-
cepts check structural properties of models. Our hybrid con-
cepts are similar to declarations of Java interfaces, but where
operations are defined for a collection of classes.

With respect to the binding, generic programming pro-
poses either an automatic binding of concepts, or a man-
ual one through concept maps [29]. The latter allows an
explicit mapping between concept and class operations, and
can include code for the required concept operations. In [25],
the authors propose concept-based overloading by defining
operations with same signature in different concepts. Then,
it is possible to define a family of overloaded templates, each
requiring a different concept. In this way, the most specific
implementation of the required operation will be selected
depending on the input type provided. Instead, we propose
realizations of hybrid concepts by several structural ones.
In this way, the user of the generic behaviour will select the
most appropriate structural concept fitting his meta-model.
Finally, the generic programming community has proposed
the specification of axioms defining properties for the con-
cept operations, like commutativity or associativity. Compil-
ers can use these properties for several purposes, like testing
or optimization [4]. We believe that this idea could also be
brought to our hybrid concepts using a constraint language
such as OCL to express the properties.

Another non-intrusive way to reuse model management
operations is by structural subtyping mechanisms [10,45].
Structural subtyping permits defining generic behaviours
over an arbitrary meta-model, and applying them to any meta-
model that is found to be a subtype. The subtype-of relation
between the meta-models does not need to be declared as in
nominal subtyping, but it is automatically inferred like in the
Kermeta system [30]. This approach has been applied, e.g.,
to generic refactoring [35]. In contrast, our approach requires
providing an explicit binding between concepts (supertype)
and meta-models (subtypes). This enables a fine control of
the part of the meta-model to be bound to a concept, as sev-
eral bindings may be possible. Hence, an explicit binding is
preferred for small concepts that might be bound in many dif-
ferent ways to a meta-model (e.g. a concept used to calculate
the transitive closure of a relation would only contain one

class and one relation). Instead, Kermeta’s structural subtyp-
ing frees the developer from specifying bindings, but at the
price of less control. This approach is more adequate when
the supertypes are “big” and there are few ways in which a
meta-model can be a subtype of the supertype. In general,
we believe that our notion of concept and binding could be
easily adapted for this approach. Thus, we will explore par-
tial bindings and (semi-)automatic completion mechanisms.
We could also use Kermeta’s approach to meta-model prun-
ing [43] to automatically derive structural concepts given
a concrete operation that we want to make generic. None-
theless, note that concepts can be thought as representatives
of (meta-)model types. Such explicit representation enables
their use for expressing requirements of mixins and model
template parameters, which is not possible with structural
subtyping.

Another set of related research are the (meta-)model
modularization approaches, like Reuseware [26]. In this
approach, the authors develop a language-independent com-
position language, which can be used to define composition
interfaces for models, in an intrusive way. While Reuseware
solves the modularization of models, our templates provide
in addition an instantiation mechanism, suitable to construct
patterns and component libraries. In addition, [26] does not
consider generic behaviours and lacks abstraction mecha-
nisms like concepts.

Parameterized modules were proposed in algebraic speci-
fication in the 1980s [21]. A parameterized module is usually
represented with a morphism par : P → M from the formal
parameters to the module. This approach was updated in [50]
to define parameterized MOF-based meta-models. While we
will take as inspiration these previous approaches to build a
formalization of our approach, in this paper we propose using
concepts to restrict how the formal parameters can be bound
to the actual parameters in both mixins and model templates.

Our approach also has some similarities with aspect ori-
ented modelling (AOM) [31]. AOM focuses on modularizing
and composing crosscutting concerns within software mod-
els. These concerns are expressed using template models, fre-
quently class or sequence diagrams, which have some type
parameters. Some aspects have pointcuts expressing condi-
tions that enable the application of the aspect (the advice).
Hence, one could interpret our model templates as aspects,
where the template parameters and the concept act like
pointcuts, and the body of the template acts like an advice.
The application of our approach for AOM is left for future
work.

Finally, there are several tools supporting multiple meta-
levels, like DeepJava [34] and the approach of [2]. Forms
of multi-level meta-modelling can be traced back to knowl-
edge-based systems like Telos [38] and deductive object base
managers like ConceptBase [28]. However, none of those
systems consider genericity explicitly.

123

www.manaraa.com

From types to type requirements 473

11 Conclusions and future work

In this paper, we have shown the benefits of bringing con-
cepts, templates and mixin layers into MDE. Concepts
allow expressing requirements of template parameters, and
by themselves permit defining behaviour independently of
meta-models, hence becoming more reusable. Templates can
be applied to models or meta-models and promote extend-
ibility, modularity and reusability. At the model level, they
are useful to define patterns and model component libraries.
At the meta-model level, mixin layers are especially useful to
provide the necessary infrastructure to simulate and execute
models. We have shown how the MetaDepth tool [14] pro-
vides support for all these elements, however the discussions
in this paper are general and applicable to other contexts and
tools as well.

We believe that the semantics of many modelling lan-
guages can be classified using concepts. Hence, we plan to
continue defining concepts for other kinds of semantics, like
communication semantics or process-interaction semantics.
Moreover, the combination of concepts and semantic mix-
in layers will provide support for the rapid prototyping of
language semantics.

We are currently exploring the potential opened by gene-
ricity, for instance to build pattern libraries for domain-spe-
cific languages through model templates, or to define any
kind of model management operation like model-to-model
transformations. We are also working on a formalization
of our approach to investigate bindings enabling different
degrees of type-safety for given operations, potential issues
with non-injective bindings, the conditions under which tem-
plate instantiation yields conformance, as well as the use
of genericity elements with formal transformation languages
like graph transformation. With such a formalization, we aim
at deriving proof mechanisms for type safety similar to those
in [45], as well as the correctness of mixin and model tem-
plate instantiation and composition. We will also explore the
implications and usage patterns of genericity in a multi-level
meta-modelling setting with more than two meta-levels, as
well as the usefulness of our approach for AOM.

Regarding tool support, we are currently improving the
MetaDepth support for genericity, in particular to allow
primitive types as template parameters, the definition of axi-
oms for hybrid concepts, the extension of several meta-
models by a mixin, and more flexible bindings includ-
ing partial bindings and their (semi-)automated comple-
tion.

Acknowledgments We thank the referees for their useful comments.
This work has been sponsored by the Spanish Ministry of Science and
Innovation with projects METEORIC (TIN2008-02081) and Go Lite
(TIN2011-24139), and by the R&D program of the Community of
Madrid with project “e-Madrid” (S2009/TIC-1650).

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput.
Sci. 126(2), 183–235 (1994)

2. Atkinson, C., Gutheil, M., Kennel, B.: A flexible infrastruc-
ture for multilevel language engineering. IEEE Trans. Soft.
Eng. 35(6), 742–755 (2009)

3. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastruc-
ture. ACM Trans. Model. Comput. Simul. 12(4), 290–321 (2002)

4. Bagge, A.H., Haveraaen, M.: Axiom-based transformations: opti-
misation and testing. Electr. Notes Theor. Comput. Sci. 238(5),
17–33 (2009)

5. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Pettersson,
P., Yi, W., Hendriks, M.: Uppaal 4.0. In: Proceedings of QEST,
pp. 125–126 (2006). http://www.uppaal.org/

6. Bonet, P., Llado, C., Puijaner, R., Knottenbelt, W.: PIPE v2.5:
A Petri net tool for performance modelling. In: CLEI’07 (2007).
http://pipe2.sourceforge.net/

7. Boost. http://www.boost.org/
8. Bottoni, P., Guerra, E., de Lara, J.: Enforced generative patterns for

the specification of the syntax and semantics of visual languages.
J. Vis. Lang. Comput. 19(4), 429–455 (2008)

9. BPMN. http://www.bpmn.org/
10. Cardelli, L., Wegner, P.: On understanding types, data abstraction,

and polymorphism. ACM Comput. Surv. 17, 471–523 (1985)
11. Clark, T., Evans, A., Kent, S.: Aspect-oriented metamodel-

ling. Comput. J. 46, 566–577 (2003)
12. Clark, T., Sammut, P., Willans, J.: Applied Metamodelling, a

Foundation for Language Driven Development, 2nd edn. Cet-
eva, Leeds (2008)

13. CPNTools. http://cpntools.org/
14. de Lara, J., Guerra, E.: Deep meta-modelling with MetaDepth.

In: TOOLS’10. LNCS, vol. 6141, pp. 1–20. Springer, Berlin (2010).
http://astreo.ii.uam.es/~jlara/metaDepth/

15. de Lara, J., Guerra, E.: Generic meta-modelling with concepts,
templates and mixin layers. In: MoDELS (1). LNCS, vol. 6394,
pp. 16–30. Springer, Berlin (2010)

16. de Lara, J., Guerra, E., Bottoni, P.: Triple patterns: Compact spec-
ifications for the generation of operational triple graph grammar
rules. In: GT-VMT’07. Electronic Communications of the EASST,
vol. 6 (2007)

17. de Lara, J., Vangheluwe, H.: Automating the transformation-based
analysis of visual languages. Formal Aspects Comput. 22, 297–
326 (2010)

18. Dingel, J., Diskin, Z., Zito, A.: Understanding and improving UML
package merge. SoSyM 7, 443–467 (2008)

19. D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks
with UML: The Catalysis Approach. Addison-Wesley Longman
Publishing Co. Inc., Boston (1999)

20. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of
Algebraic Graph Transformation. Springer, Berlin (2006)

21. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 2:
Module Specifications and Constraints. Springer, Monographs in
Theor. Comp. Sci. (1990)

22. Epsilon. http://www.eclipse.org/gmt/epsilon/ (2009)
23. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Pat-

terns. Elements of Reusable Object-Oriented Software. Addison
Wesley, Boston (1994)

24. García, R., Jarvi, J., Lumsdaine, A., Siek, J.G., Willcock, J.: A
comparative study of language support for generic programming.
SIGPLAN Not. 38(11), 115–134 (2003)

25. Gregor, D., Järvi, J., Siek, J.G., Stroustrup, B., Reis, G.D., Lums-
daine, A.: Concepts: linguistic support for generic programming in
C++. In: OOPSLA. pp. 291–310. ACM, New York (2006)

123

http://www.uppaal.org/
http://pipe2.sourceforge.net/
http://www.boost.org/
http://www.bpmn.org/
http://cpntools.org/
http://astreo.ii.uam.es/~jlara/metaDepth/
http://www.eclipse.org/gmt/epsilon/

www.manaraa.com

474 J. de Lara, E. Guerra

26. Heidenreich, F., Henriksson, J., Johannes, J., Zschaler, S.: On lan-
guage-independent model modularisation. T. Asp.Oriented Soft.
Dev. VI 6, 39–82 (2009)

27. Hillah, L., Kindler, E., Kordon, F., Petrucci, L., Tréves, N.: A primer
on the petri net markup language and iso/iec 15909-2. Petri Net
Newsl 76, 9–28 (2009). http://www.pnml.org

28. Jarke, M., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M.: Concept-
base—a deductive object base for meta data management. J. Intell.
Inf. Syst. 4(2), 167–192 (1995)

29. Järvi, J., Marcus, M., Smith, J.N.: Programming with C++ con-
cepts. Sci. Comput. Program. 75(7), 596–614 (2010)

30. Kermeta. http://www.kermeta.org/
31. Kienzle, J., Abed, W.A., Fleurey, F., Jézéquel, J.-M., Klein, J.:

Aspect-oriented design with reusable aspect models. In: Transac-
tion on Aspect Oriented Software Development 7. vol. 6210, pp.
272–320 (2010)

32. Kolovos D.S., Paige R.F., Polack, F.: The Epsilon Object Language
(EOL). In: ECMDA-FA’06. LNCS, vol. 4066, pp. 128–142.
Springer, Berlin (2006)

33. Kühne, T.: An observer-based notion of model inheritance. In:
MoDELS’10, volume 6394—Part I of LNCS, pp. 31–45. Springer,
Berlin (2010)

34. Kühne, T., Schreiber, D.: Can programming be liberated from
the two-level style? – Multi-level programming with DeepJava.
In: OOPSLA’07, pp. 229–244. ACM, New York (2007)

35. Moha, N., Mahé, V., Barais, O., Jézéquel, J.-M.: Generic model
refactorings. In: MoDELS’09. LNCS, vol. 5795, pp. 628–643.
Springer, Berlin (2009)

36. Murata, T.: Petri nets: properties, analysis and applications. Proc.
IEEE 77(4), 541–580 (1989)

37. Musser, D.R., Schupp, S., Loos, R.: Requirement oriented pro-
gramming. In: Generic Programming. LNCS, vol. 1766, pp. 12–24.
Springer, Berlin (1998)

38. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: rep-
resenting knowledge about information systems. ACM Trans. Inf.
Syst. 8(4), 325–362 (1990)

39. OMG UML 2.2 specification. http://www.omg.org/spec/UML/2.
2/

40. OMG MOF 2.0. http://www.omg.org/spec/MOF/2.0/ (2009)
41. Rose, L., Guerra, E., de Lara, J., Etien, A., Kolovos, D.S.,

Paige, R.F.: Genericity for model management operations. SoSyM
(2011, in press)

42. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.: The epsilon gen-
eration language. In: ECMDA-FA’08. LNCS, vol. 5095, pp. 1–16.
Springer, Berlin (2008)

43. Sen, S., Moha, N., Baudry, B., Jézéquel, J.-M.: Meta-model prun-
ing. In: MoDELS, LNCS, vol. 5795, pp. 32–46 (2009)

44. Smaragdakis, Y., Batory, D.: Mixin layers: an object-oriented
implementation technique for refinements and collaboration-based
designs. ACM Trans. Softw. Eng. Methodol. 11(2), 215–255 (2002)

45. Steel, J., Jézéquel, J.-M.: On model typing. SoSyM 6(4), 401–
413 (2007)

46. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
eclipse Modeling Framework, 2nd Edition. Addison-Wesley Pro-
fessional, Boston (2008)

47. Stepanov, A., Lee, M.: The standard template library. Technical
report. HP Labs, Palo Alto (1994)

48. Stepanov, A., McJones, P.: Elements of Programming. Addison
Wesley, Boston (2009)

49. Stroustrup, B.: The C++0x remove concepts decision. Dr. Dobbs
(2009). http://www.ddj.com/cpp/218600111

50. Weisemöller, I., Schürr, A.: Formal definition of MOF 2.0 meta-
model components and composition. In: MoDELS’08. LNCS, vol.
5301, pp. 386–400. Springer, Berlin (2008)

Author Biographies

Juan de Lara is an associate
professor at the Computer Sci-
ence Department of the Univers-
idad Autónoma in Madrid, where
he teaches Software Analysis
and Design and Model-Driven
Development. He holds a PhD
degree in Computer Science, and
works in areas such as modelling
and simulation, meta-modelling,
visual languages and graph trans-
formation. He has been a post-
doctoral researcher at the MSDL
lab (McGill University), the
institute of theoretical computer

science (TU Berlin), the department of computer science of the Univer-
sity of Rome “Sapienza” and the University of York (UK).

Esther Guerra received her
PhD degree in Computer Science
for the Universidad Autónoma
in Madrid. From 2010, she is
working in the Computer Sci-
ence Department of the Uni-
versidad Autónoma in Madrid,
and previously, she worked in
the Computer Science Depart-
ment at Carlos III University in
Madrid. She has been a doctoral
researcher at the Institute of The-
oretical Computer Science (TU
Berlin) and at the University of
Rome “Sapienza”, as well as a

post-doctoral researcher at the University of York (UK). Her research
interests focus on meta-modelling, formalization of software patterns,
and formal techniques in model-driven development primarily for
model transformation.

123

http://www.pnml.org
http://www.kermeta.org/
http://www.omg.org/spec/UML/2.2/
http://www.omg.org/spec/UML/2.2/
http://www.omg.org/spec/MOF/2.0/
http://www.ddj.com/cpp/218600111

www.manaraa.com

Copyright of Software & Systems Modeling is the property of Springer Science & Business
Media B.V. and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

	From types to type requirements: genericity for model-driven engineering
	Abstract
	1 Introduction
	2 From generic programming to generic model-driven engineering
	2.1 Applying genericity in model-driven engineering

	3 MetaDepth
	3.1 Defining in-place transformations
	3.2 Defining code generators

	4 Structural concepts
	4.1 Motivation
	4.2 Defining and binding structural concepts

	5 Generic model management operations
	5.1 Generic simulators
	5.2 Generic code generators

	6 Hybrid concepts, static binding and concept generalization
	6.1 Static bindings: binding hybrid concepts to structural concepts
	6.2 Concept specialization

	7 Model templates
	7.1 Generic model templates

	8 Meta-model templates and semantic mixin layers
	9 Further examples
	9.1 Automata model templates
	9.2 Questionnaires and timed automata

	10 Related work
	11 Conclusions and future work
	Acknowledgments
	References

